Risk-adjusted Valuation for R&D Projects

F. Peter Boer June, 2007

Is it too early to think about \$ in early stage R&D projects?

- Not if you are asking for material financial support
- Not if you are competing with other fuzzy projects
- Not if you are competing with shorter-term projects
- Not if you want to assess risk
- Not if you are thinking about strategy
 - Design financing plan for startup with one core technology and 3 product opportunities

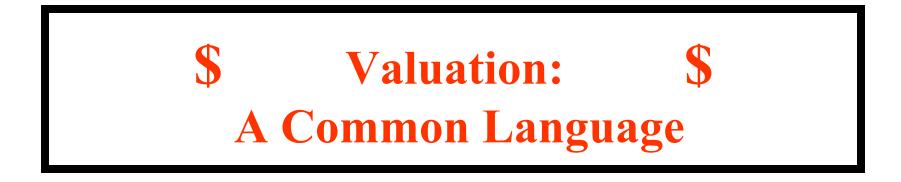
Risk-adjusted Valuation

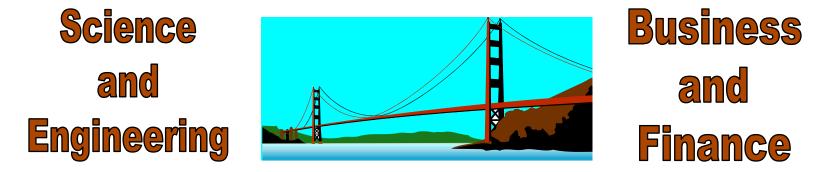
Factors Affecting R&D Project Value

- The Time Value of Money (Payoff is deferred)
- R&D Costs
- R&D Risks

TigerScientific Inc.

- Unique Risk
- Market Risk


Risk-adjusted Valuation


Is it too difficult to do?

- No longer
- Financial statements, decision analysis, and real options can be integrated into a single step
- Sensitivities to key unknowns can be instantly tested
 - Monte Carlo may take a minute or two longer!
- Templates can be customized for your organization

Risk-adjusted Valuation

Risk-adjusted Valuation

Outline of Talk

- Economic Value
- Risk
- Decision Analysis
- Real Options Analysis

New

TigerScientific Inc.

- Integrating Decision Analysis with Real Options
- Demonstrate Integrated R&D Valuation Model

Risk-adjusted Valuation

For Early Stage Projects

Context

Economic Value Model

- As Net Present Value of Free Cash Flow
 - free cash flow is cash generated that is not required to achieve the business plan
 - usually assume growing perpetuity after some horizon year
 - Economic Value = FCF/(WACC G)
 - note FCF and G are not independent!

» This approach is today's "gold standard"

WACC = \underline{W} eighted \underline{A} verage \underline{C} ost of \underline{C} apital

TigerScientific Inc.

Risk-adjusted Valuation

Uses and Misuses of Economic Value

- Appropriate for assets
 - Sometimes based on forecasts
- Necessary first step for plans
- Misses the Value of Flexibility
- Inoppropriate for opportunities
 - Opportunities are options
 - They become assets only when a commitment is made
- Inappropriate for Plans
 - Plans are Options!

erScientific Inc.

Risk-adjusted Valuation

Characteristics of Unique and Market Risks

- Unique risk (Probability)
 - Investor can in principle diversify
 - Drilling syndicates
 - R&D portfolios

Historical data bases (possibly proprietary) can be invaluable for estimating both market and unique risks

- unique risk is probability of technical success
 - » estimate based on historical experience
- Expert can estimate unique risk
 - Better risk management generates competitive advantage
- Market risk (Volatility)
 - Cannot be diversified

TigerScientific Inc.

- Characterized by volatility

Risk-adjusted Valuation

Decision Analysis

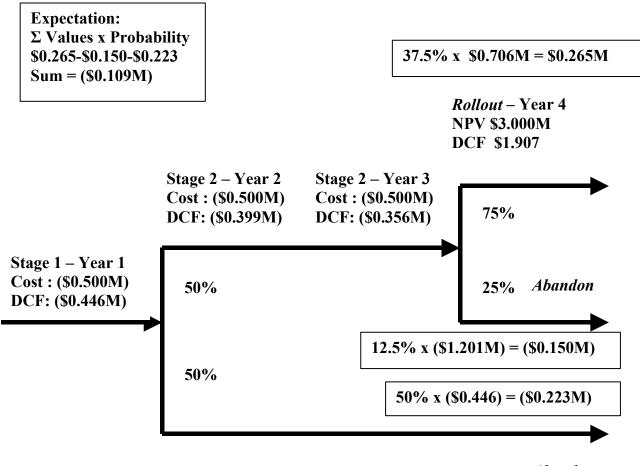
Accounting for the Cost and Unique Risk of an R&D Project

Elements of an R&D Decision Tree

- Branches are at Stagegates
- Each stage has a cost, probability of success and duration
 - All affect value

gerScientific Inc.

- The tree has a number of possible outcomes, each with a value and a probability
- The expected value of the proposal is the sum of the probability-weighted outcomes
- Rewards, and costs, are discounted by WACC


Example with 2 R&D Stages

- Stage 1: 1 yr, \$500,000, 50%
- Stage 2: 2 yrs, \$1,000,000, 75%
- Commercial Rollout: NPV = \$3,000,000
- WACC = 12%

Risk-adjusted Valuation

Figure 1: Project Outcomes by DCF/Decision Tree. The project has abandonment scenarios after Stages 1 and 2,and one successful outcome with a 37.5% chance of success. The expectattion value on the upper left is the weighted sum of the three possible outcomes.

Risk-adjusted Valuation

Real Options Theory

Accounting for Market Risk

Options and Market Risk

- Options are the right but not the obligation to enter a transaction (e.g. make an investment)
- Financial options are a form of capital and are traded in enormous quantities

Valuation methods are well established

• Market volatility enhances the value of an option; while it decreases the value of a stock (the underlying security)!

Risk-adjusted Valuation

The Black-Scholes Equation for a Call Option

Financial Option Inputs

- 1. Price of Underlying Security
- 2. Strike Price
- 3. Share Price Volatility (σ)
- 4. Time
- 5. Risk-free Rate

Risk-adjusted Valuation

Financial Options (Black-Scholes Calculator)

ltem	Symbol	Value	
Price	Р	\$50.00	
Strike Price	Х	\$50.00	
Risk free rate	r	5.20%	
Years	t	10.000	
Standard deviation of security	Sigma	20.00%	
Discount factor	(1+r)^t	1.6602	
Square root of time	t^0.5	3.16	
Present Value (PV) of Strike Price	PV(X)	\$30.12	
Ratio of Price to PV of Strike Price	Y	1.6602	
Log of Y	Ln(Y)	0.5069	
Risk Factor	Z=sigma*t^0.5	0.632	
Black-Scholes D1 Factor	D1=In(Y)/Z+0.5Z	1.1178	
Black-Scholes D2 Factor	D2=D1-Z	0.4853	
NORMSDIST for D1	N(D1)	0.8682	
NORMSDIST for D2	N(D2)	0.6863	
Relative Value of Option	W=N(D1)-N(D2)/Y	45.48%	
"Intrinsic Value" (all negatives = zero)	P-X	\$0.00	
Value of Option	W*P	\$22.74	

Risk-adjusted Valuation

For Early Stage Projects

TigerScientific Inc.

Real Options Theory

- Real options theory is the extension of options theory to non-financial assets
 - Physical (real) assets
 - Business plans
 - Intellectual capital
- Real options capture the value of managerial flexibility
 - DCF Cash Flow does not consider this point
- Important Options in Business
 - Abandonment Option (covered under Decision Analysis)
 - Call option (make an investment)
 - Flexibility Options (defer, accelerate, expand, contract)
 - Platform Options

I TigerScientific Inc.

- Real options have limited liquidity
- For some projects optionality turbocharges valuations

Risk-adjusted Valuation

The Black-Scholes Equation for a Call Option

Stock Option Inputs

- 1. Price of Underlying Security
- 2. Strike Price
- 3. Share Price Volatility (σ)
- 4. Time

TigerScientific Inc.

5. Risk-free Rate

Real Option Inputs

- 1. Present Value of Business Plan
- 2. Initial Investment
- 3. Proxy Volatility
- 4. Time
- 5. Risk-free Rate

Risk-adjusted Valuation

The Mark II Case:

Brealey & Myers, Principles of Corporate Finance

- Investment (Mark I) \$450M
- NPV: -\$46M
- Mark II Option: Invest \$900M 3 years later with identical pro forma economics!
- Value of Mark II Option +\$55M

- (Volatility 35%)

• Total Value +\$9M

TigerScientific Inc.

Risk-adjusted Valuation

The Mark II Case: Turbocharging Valuations

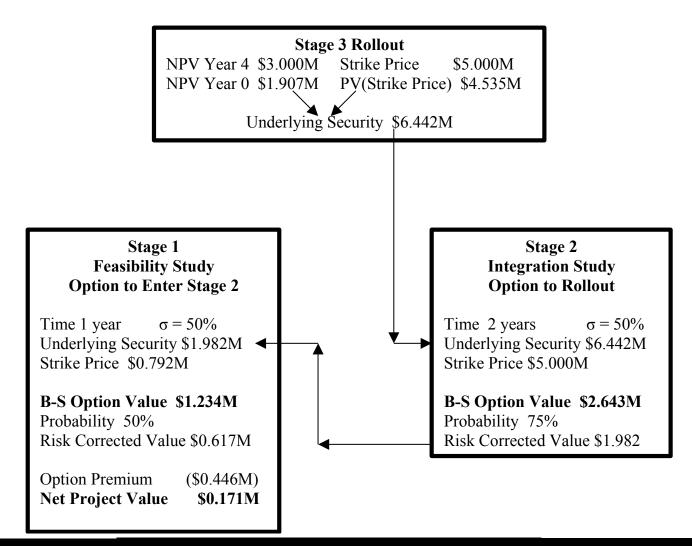
• Ultra High Growth

TigerScientific Inc.

• Value at Internet Speed:

- 10x vs 2x (in 3 yrs)

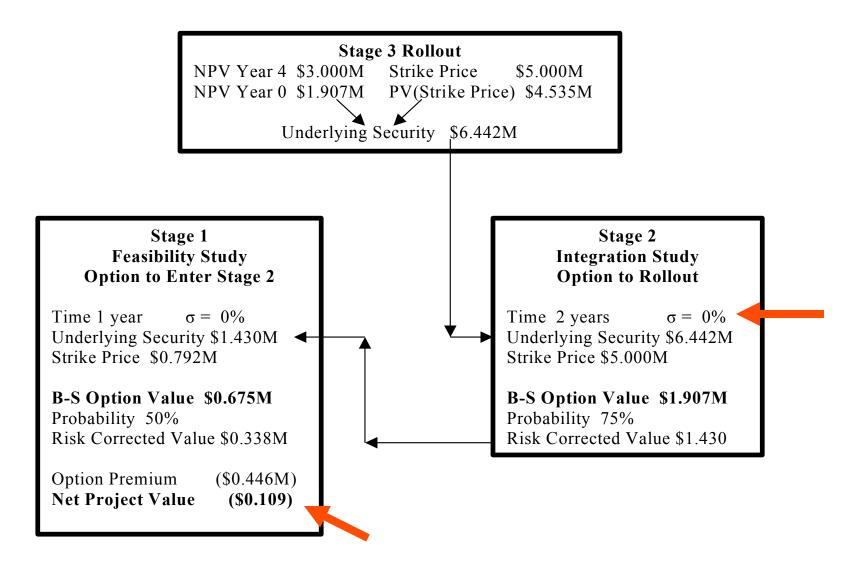
- Value of Option Grows fivefold to \$275M
- High Growth plus High Volatility
- Total Value with Internet Volatility - 100% vs 35%
- Value of Option Grows to \$1263M


Risk-adjusted Valuation

Combining Decision Trees with Real Options

Showing equivalence when Volatility = 0

Figure 2. Project Outcome by Real Options Analysis. The Real Options calculation begins with value of a successful Rollout (top). This value is the underlying security for the Integration Study Option (lower right), which is in turn the underlying security for the Feasibility Study (lower left).

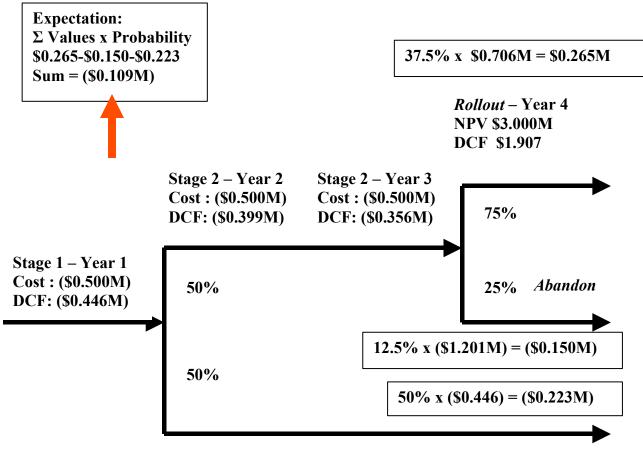


Risk-adjusted Valuation

For Early Stage Projects

TigerScientific Inc.

Figure 3. Project Outcome by Real Options Analysis – Zero Volatility. The dynamics are identical to Figure 2, with volatility set equal to zero. The result equals that of Figure 1.



For Early Stage Projects

TigerScientific Inc.

Figure 1: Project Outcomes by DCF/Decision Tree. The project has abandonment scenarios after Stages 1 and 2,and one successful outcome with a 37.5% chance of success. The expectattion value on the upper left is the weighted sum of the three possible outcomes.

Risk-adjusted Valuation

Combining Decision Trees with Real Options

- Decision Analysis can be seamlessly integrated with the Black-Scholes Equation
- Real Options comes along for the ride

igerScientific Inc.

- Because plans are options, this approach gives a complete analysis of risk-adjusted value
- The remaining task for complete integration is to calculate NPV

Integrated Model for Risk-adjusted Valuation of R&D Projects

Integrated Model Structure

- 1. Financial Statement (FS) for Commercial Business
 - Requires:
 - Revenue Model, Cost Estimates, Capital Estimates
 - Cost of Capital, Choice of Horizon Value Method
- 2. Feed NPV into DT/RO Calculation
 - Requires:

TigerScientific Inc.

- Cost, Duration, Probability of Success for R&D Stages
- Volatility, Risk-free-rate
- 3. Can Feed Capitalization Table
 - For valuation of startups and technology acquisitions

Inputs (millions)		Outputs (millions)		
Units Sold Yr 1	6	Growth Rate Years 1-5	68.18%	
Units Sold Yr 5	48	Growth Rate Yrs 5-10	15.81%	
Units Sold Yr 10	100	Long- Term Growth Rate	5.00%	
Long- Term Growth Rate	5.00%	FCF Multiplier (MF)	14.29	
Sales Price/Unit	\$1.00	Var. Cost as % Revenues	57.00%	
Variable Cost/unit	\$0.57	Mfg OH as % Fixed Capital	11.43%	
Manufacturing Overhead/unit	\$0.08	Turnover Ratio	142.86%	
Initial Fixed Capital/unit	\$0.70	Initial Investment	\$34.28	
Initial Annual Capacity (units)	48			
Incremental FC/unit	\$0.50	Business Value in First Commercial Year		
Asset Life (yrs)	10	Horizon Value Method	IRR	NPV
Selling, Admin and R&D	10.00%	1. HV = Working Capital	14.19%	\$4.73
Days Inventory	30	2. HV = Book Value	15.82%	\$9.04
Days Receivables	36	3. HV = EBITDA * ME	24.93%	\$52.02
Days Payables	25	4. HV = Net Income*PE Ratio	25.17%	\$53.73
Tax Rate	35.00%	5. HV = FCF *MF	26.76%	\$65.94
Cost of Capital	12.00%	ROIC (ave)	18.55%	
EBITDA Multiplier (ME)	7	10-Yr IRR	7.07%	
PE Ratio	12.5	10-YR NPV (no HV)	(\$7.23)	
Risk-Free Rate	5.00%	Current Value		
Volatility	30.00%			
Choice of HV Method (1-5)	5	Current Value as Rifle Shot		(\$1.01)
R&D Parameters		Current Value by DT		\$1.76
Duration Stage 1	2	Value Added by DT		\$2.77
Duration Stage 2	2	Current Value by DTRO		\$1.82
Duration Stage 3	2	Value Added by RO		\$0.06
Duration Stage 4	2			
Pretax Cost Stage 1	\$0.75	Cumulative Probability		10.42%
Pretax Cost Stage 2	\$1.50	Cumulative R&D Cost (AT)		\$7.31
Pretax Cost Stage 3	\$3.00			
Pretax Cost Stage 4	\$6.00	Value Progression		
Probability Stage 1	33.33%	Value after Stage 1		\$6.63
Probability Stage 2	50.00%	Value after Stage 2		\$14.60
Probability Stage 3	75.00%	Value after Stage 3		\$20.83
Probability Stage 4	83.33%	Value after Stage 4		\$65.94

Risk-adjusted Valuation

For Early Stage Projects

TigerScientific Inc.

Features of Model

- Sensitivities at a Glance
- Show Build up of Value as Risks are Eliminated
- Quantifies Decision Tree Contribution
- Quantifies Real Option Contribution

Risk-adjusted Valuation

Total Value

Economic Value

Cash Flow Generated by *in-place* Physical, Intellectual and Financial Capital

(measure as NPV)

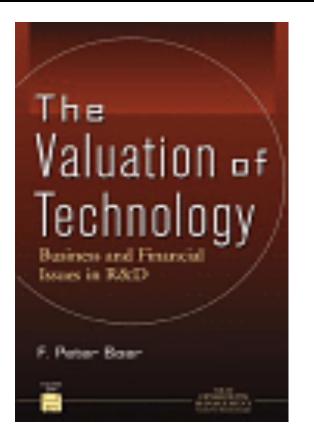
Strategic Value

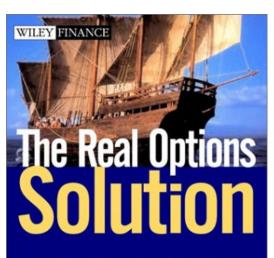
Value of Intellectual Capital Incorporated in Unrealized Business Plans

(measure as Options)

Total Value

Risk-adjusted Valuation


R&D Transforms Capital


- Economic capital is transformed into strategic capital via investment in new opportunities
 - Without investment, Free Cash Flow would be higher
- Strategic capital is realized when it is converted into economic capital
 - By executing the business plan
 - By liquidating failing efforts

Risk-adjusted Valuation

Books, Papers, and Courses

Using Valuation Methods to Tame Risk


F. PETER BOER

http://www.tigerscientific.com

Risk-adjusted Valuation

New !

Opportunity

Beyond Conventional Wisdom

F. Peter Boer

